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Note 

Removal of Spurious Modes Encountered in 
Solving Stability Problems by Spectral Metho 

1. INTRODUCTMN 

An important application of Chebyshev spectral methods is found in the solution 
of hydrodynamic stability eigenvalue problems. For example, accurate solutions of 
the Orr-Sommerfeld equation using expansions in Chebyshev polynomials have 
been reported in [l-4]. Unfortunately, along with the highly accurate compute 
values of the true modes, there appear spurious unstable modes with large growt 
rates whose magnitude increases with an increase of the size of the truncated 
algebraic system of equations. Another example where spurious unstable mode 
computed is an initial value problem of a one-dimensional model of Stokes 
[2]. On the other hand, no spurious roots are computed, using the same procedure 
in [4], when the conditions for draw resonance of a liquid jet are determined [5]. 
It is evident that the spurious roots result because of the truncation of the differen- 
tial equations to a finite-dimensional system of algebraic equations. One way to 
eliminate the spurious roots in hydrodynamics (if they occur) is to use separate 
expansions for the vorticity and the stream function [2]. However, the size of the 
resulting algebraic system essentially doubles. In this paper we develop an aher- 
native technique based on the Galerkin method which results in no increase in the 
size of the algebraic system. 

The occurrence of spurious roots in the spectra of solutions of the Orr-Sommer- 
feld equation has been reported in [2,4] even though two different approaches 
were used to implement the spectral method; the r-method [I, 21 and a Galerkin- 
type method [4]. These two approaches differ in the assumed representations and 
the treatment of the boundary conditions. They agree in the treatment of the con- 
ditions imposed by the differential system on the expansion coefficients in that inner 
products with Chebyshev polynomials are employed. It is very well known, 
however, that results from direct application of the Galerkin method, where the 
inner products are taken with base functions satisfying all the homogeneous boun- 
dary conditions, are free from spurious modes (see [6] for numerous examples). 
This fact can be used in conjunction with the author’s [4] method to arrive at a 
scheme which enjoys the infinite-order convergence of the Chebyshev-spectral 
method cl] and is free from spurious eigenmodes. The procedure is develope 
this paper and applied to solving the Orr-Sommerfeld equation corresponding to a 
pair of base flows; plane Poiseuille and Blasius profiles. 
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2. GALERKIN-CHEBYSHEV APPROXIMATIONS 

2.1. Formulation 

Linear stability of a parallel flow U(z), - 1 <z 6 1, is determined according to 
the eigenvalues, c (the flow is unstable if there is an eigenvalue with positive 
imaginary part), of the Orr-Sommerfeld equation 

$(4)-2c12$(2)+ a”$ - iaR[(U- c)($(~)- u2$) - U(‘)$] = 0, (2.1) 

$=#pdJ at z= +l, (2.2) 

where a is the disturbance wavenumber and R is the Reynolds number. Superscript 
numbers in parenthesis on functions of z indicate derivatives with respect to z. The 
procedure begins by assuming a representation for the highest derivative in (2.1) in 
terms of Tj(z), 

I)‘~)(z)= f ajTj(z). 
j=O 

(2.3) 

The representations of the lower derivatives of ll/(z) are found by successive 
integration of (2.3). The resulting constants of integration are conveniently chosen 
so that the boundary conditions (2.2) are satisfied. This procedure is explained in 
detail [4], thus we have 

N+4--P N 

I)(~)(Z) = C C g$‘a,Tj(z), p=o, 1,2, 3. (2.4) 
j=O i=O 

The conditions imposed on IJ by (2.1) are now derived. After substitution of (2.3) 
and (2.4) in (2.1) we can take the Chebyshev inner product with Ti, i=O, l,..., N. 
This was the procedure used in [4] and led to an algebraic eigenvalue problem 
with a pair of spurious roots. A strictly Galerkin procedure may be derived as 
follows. The representation for $(z) in (2.4) can be rewritten as 

Nz)= ? ai4i(z), 
i=O 

(2.5) 

where 
N+4 

cji(Z) = c gJwj(z). (2.6) 
j=O 

Observe that di(z) can be regarded as a new linearly independent basis (it is easy to 
show that the rank of g$‘) is (N+ 1)) which satisfies all the homogeneous boundary 
conditions in (2.2). We now use (2.3) and (2.4) in (2.1) as well as the expansion 

Nbilb-8 

cP'(z) = c @v,(z), p=o, 1,2 
?I=0 
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for the base flow and take the Chebyshev inner product with 4i(z), i = 0, I,..., N, to 
derive the algebraic system 

N 1 

W 

N+2 N + 2 

k=O id 
c,giy - 2$ 1 c,g$$"g)p' + a4 1 cjg$)gJl?j 

j=O j=O 

Nb Nf2 N+4 

C C C - bj"gL$'gff' 
!=O n=O j=o 

Nb N+4 Nf4 

+ c c 1 a2bjo)g~yg~.~) 
i=O n=O j=O 

Nb+2 Ni4 N+4 

+ C C 1 bj2’g;$‘g$‘: 
/=O n=O j=O 

N Ni-2 

= -c c c cjgJ(p)(g$) .- LY2g$)) ak, i=o, 1 1.") N5 62.8) 
k=O j=O 

where co=2, ci= 1; i> 1 and 

Aj/k=tCCjJj,l-tk + bj,[-k + dj,k.../]. (2.9) 

Equation (2.8) is the algebraic eigenvalue problem. It is readily reduced to that 
which we derived in [4] by replacing one g$‘) by a Kronecker delta in each term in 
(2.8), thus more computations are needed to form (2.8) than its counterpart in [4]. 

owever, the present procedure requires the solution of the same size linear system. 
As in [4], soiution of (2.8) is obtained using the l[MSL routine EIGZC. 

TABLE I 

First Four Eigenvalues of Plane Poiseuille Flow 
a=1 and R=lO,OOO" 

N+l Method of [4] Present results 

20 0.0978 + i 20.4 
0.0966 + i 16.8 
0.580 +i 0.0242 
0.827 +i 0.0137 

26 0.0754 + i 56.0 
0.0747 + i 48.3 
0.237 fi 0.00366 
0.849 -i 0.0249 

30 0.0654 + i 97.6 
0.0649 + i 85.7 
0.237 fi 0.00372 
0.970 -i 0.0352 

0.239 +i0.000814 
0.960 - iO.0206 
0.891- iO.0216 
0.963 - IO.0219 

0.238 + iO.00384 
0.970- iO.0314 
0.930- iO.0317 
0.970- iO.0333 

0.238 + iO.00372 
0.967 -iO.O387 
0.964 - i 0.0389 
0.948 - i 0.0413 

” Most unstable eigenvalue: 0.238 + i 0.00374[ I] 
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2.2. Plane Poiseuille Flow 

Here U(z) = 1 - z2, which sets the values of b:fl), /I = 0, 1, 2, in (2.7) and (2.8). In 
Table I we list the first four eigenvalues corresponding to cx = 1 and R = 10,000 at 
three different values on N. We also show results obtained by the method of [4] as 
well as the “exact” value for the single unstable mode [ 11. From this table it is clear 
that simply equating coefficients of Ti leads to a pair of spurious roots (one sym- 
metric and the other antisymmetric about z = 0) while the present technique is free 
from these eigensolutions. 

2.3. Blasius Profile 

The expansion coefficients in this case (b$)) are computed by solving the Blasius 
differential equation (see [4], we set qe at 10 and N, at 30). The first four eigen- 
values are shown in Table II. We also show results from [4] as well as the “exact” 
value of the single unstable mode [3]. Again, while two spurious unstable modes 
result if we take inner products with Ti, the present technique produces no such 
eigenvalues. 

It is important to note that both approaches, [4] and the present Galerkin 
method require essentially the same number of expansion coefficients (about 4 less 
than that needed if one uses the z-method) to produce accurate solutions of the 
Orr-Sommerfeld equation for either profile. The reason for the occurrence of the 
spurious roots is not understood. Perhaps more important, it is not clear at all why 
there are two (and only two) such eigenmodes regardless of either the truncation N 
or the base flow. 

TABLE II 

First Four Eigenvalues of Blasius Profile 
CI = 0.173 and R = 580” 

N+l Method of [4] Present results 

24 0.573 + i 19.6 
0.575 + i 16.7 
0.407 + i 0.0159 
1.000 -i 0.000741 

30 0.559 + i 46.7 
0.560 + i 41.0 
0.365 + i 0.0123 
1.000 - i 0.000740 

36 0.549 + i 95.2 
0.550 + i 85.3 
0.364 + i 0.0792 
1.000 - i 0.000740 

0.358 + i 0.00322 
1.000 - i 0.000740 
1.000 - i 0.00160 
1.000 - i 0.00284 

0.364 + i 0.00790 
1.000 - i 0.000740 
l.oOO-iO.00160 
1.000 - i 0.00284 

0.364 + i 0.00810 
1.000 - i 0.000740 
1.000 - i 0.00160 
1.000 - i 0.00284 

* Most unstable eigenvalue: 0.364 + i 0.00796[3] 
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3. CONCLUSIONS 

We have presented a Galerkin-Chebyshev technique which enjoys i~~~ite~or~e~ 
convergence and overcomes the potentially severe problems associate 
spurious unstable eigenvalues (especially with initial value problems). Solu 
the Orr-Sommerfeld equations presented are free from the pair of spurious roots 
encountered with other methods [l-4]. 

An important observation is that the Chebyshev methods in the present work 
and [l-4] require the solution of linear systems of nearly equal order to CX: 

accurate solutions. If one is interested in the instability of a two-dimensiona to 
two- or three-dimensional perturbations, there will result a coupled linear system of 
Orr-Sommerfeld-type equations. Application of the methods of [l-4] w  
to a number of spurious modes much larger than two. One may then have 
very large linear systems to produce accurate solutions. Thus, the present me 
which is free from these modes, may prove crucial to the success of sue 
This important topic, which basically led to the present work, is currently unden 
investigation. 
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